
©2024 Google
Uncovering MacOS and iOS IPC Vulnerabilities with Dillon Franke

Fuzzing at Mach Speed

©2024 Google 2

Who Am I?

Senior Proactive Security Consultant
(Pentesting)

Application Security
Source Code Reviews
Embedded Device Assessments

C U R R EN T L Y P R E V I O U S L Y

S T UD I E D

FLARE Offensive Task Force (OTF)
(Reverse Engineering)

Malware reversing
Searching for exploits used in the wild
0-day vulnerability research
Exploit development

Bachelor’s & Master’s in Computer Science at Stanford University
Security and Systems Engineering

HOB B I E S

Playing Guitar
Cycling in the San Francisco Bay Area
Hacking (obviously)

©2024 Google

Who is this
 talk for?

•Offensive Security Researchers
•Defensive Security Engineers
•Software Developers
•Mobile Application Researchers

©2024 Google

Overview
Join me as a I dive into my process
searching for low-level vulnerabilities
in MacOS over the past year.

Next Steps

The Attack Cycle

Crash Course on Fuzzing and IPC Mechanisms

Q&A

©2024 Google 5

C R A S H C O U R S E

What is Fuzzing?

Fuzzing is sending unexpected
inputs to a system in the hopes of
making something unexpected
happen

©2024 Google 6

C R A S H C O U R S E

What is an Attack Vector?

An attack vector is a channel to send an input to a
system

Bluetooth NotificationsInterprocess
Communications

Peripherals Wireless Connection

©2024 Google 7

C R A S H C O U R S E

What is an Attack Vector?

An attack vector is a channel to send an input to a
system

Adobe Acrobat Open PDF Functionality

Google Search Query Parameter
(https://google.com?query=<INPUT>)

Smart Watch Bluetooth Data Handling

©2024 Google 8

C R A S H C O U R S E

Why Fuzz?

In memory-unsafe languages,
(C/C++) we want to send input that
causes a crash

Depending on the type of crash, our
input might be able to trigger:

• Buffer Overflow
• Heap Overflow
• Use-After-Free
• Double Free
• Memory Leak (bypass ASLR)

1

2 1

2

©2024 Google 9

C R A S H C O U R S E

Different Types of Fuzzing

Mutation-Based
Fuzzing: Modify existing
inputs to create new
ones, then send them to
the program

Grammar-Based
Fuzzing: Generate
inputs based on specified
rules defining the
structure of valid inputs

©2024 Google 10

C R A S H C O U R S E

What is the XNU Kernel?

XNU (X is Not Unix) is the kernel that powers
macOS.

©2024 Google 11

C R A S H C O U R S E

What is the XNU Kernel?

XNU (X is Not Unix) is the kernel that powers
macOS.

I/O Kit: A framework for
developing device drivers,
designed with a model resembling
object-oriented programming.

Mach Layer: Responsible for
low-level tasks like thread
management, interprocess
communication (IPC), and
memory management.

BSD Layer: Handles
higher-level POSIX tasks,
like file system, network,
and security.

©2024 Google 12

C R A S H C O U R S E

What is the XNU Kernel?

XNU (X is Not Unix) is the kernel that powers
macOS.

I/O Kit: A framework for
developing device drivers,
designed with a model resembling
object-oriented programming.

Mach Layer: Responsible for
low-level tasks like thread
management, interprocess
communication (IPC), and
memory management.

BSD Layer: Handles
higher-level POSIX tasks,
like file system, network,
and security.

©2024 Google 13

C R A S H C O U R S E

What are Interprocess Communications?

How do they do this?

Mach Messages
Mach exceptions
Unix signals
Unnamed pipes
Named pipes (fifos)
XSI/System V IPC
POSIX IPC
Distributed Objects
Apple Events
Core Foundation IPC mechanisms

Processes need to talk to each other!

©2024 Google 14

C R A S H C O U R S E

What are Interprocess Communications?

How do they do this?

Mach Messages
Mach exceptions
Unix signals
Unnamed pipes
Named pipes (fifos)
XSI/System V IPC
POSIX IPC
Distributed Objects
Apple Events
Core Foundation IPC mechanisms

Processes need to talk to each other!

Lowest level IPC mechanism and the direct
basis for many higher level mechanisms

©2024 Google 15

C R A S H C O U R S E

What are Mach Ports?

An IPC message queue,
managed by the kernel

Send Once: Allows
sending a single message
to a mach port

Receive Right: Allows
receiving a mach port’s
messages

Send Right: Allows
sending messages to a
mach port

Port Right: Handle to a port that allows sending or receiving messages to the port

©2024 Google 16

An IPC message
queue, managed by
the kernel

Port Right: Handle to a port that allows
sending or receiving messages to the port

C R A S H C O U R S E

What are Mach Ports?

Receive Right: Allows receiving a mach port’s
messages

Send Right: Allows sending messages to a
mach port

Send Once: Allows sending a single message to
a mach port

❯ lsmp -h
Usage: lsmp -p <pid> [-a|-v|-h]
Lists information about mach ports.
Please see man page for description
of each column.

©2024 Google 17

C R A S H C O U R S E

Establishing a Mach Connection

Bootstrap Server
• A mach port to help establish connections

with other mach ports
• By default, all processes have a send right to

the bootstrap server

Mach Service
• A mach port with a name that is registered

with the Bootstrap Server (e.g.
com.apple.cansecwest)

Communicating with a Service

1. Alice allocates a new mach port with a receive right

2. Alice registers her service using a specific name

com.apple.cansecwest

By registering, Alice is giving the bootstrap server a send right

to the port Alice has a receive right to

3. Bob asks the bootstrap server for the service named

com.apple.cansecwest and the server gives Bob a copy

of the send right for Alice’s mach port

4. Bob can now send messages to Alice’s mach port for Alice

to receive

1

2

3

4

©2024 Google 18

C R A S H C O U R S E

What are Mach Messages?

A struct used to exchange data between
mach ports

©2024 Google 19

C R A S H C O U R S E

What are Mach Messages?

Sending/Receiving Mach Messages

/*
* Routine: mach_msg
* Purpose:
* Send and/or receive a message. If the message operation
* is interrupted, and the user did not request an indication
* of that fact, then restart the appropriate parts of the
* operation silently (trap version does not restart).
*/
__WATCHOS_PROHIBITED __TVOS_PROHIBITED
extern mach_msg_return_t mach_msg(
 mach_msg_header_t *msg,
 mach_msg_option_t option,
 mach_msg_size_t send_size,
 mach_msg_size_t rcv_size,
 mach_port_name_t rcv_name,
 mach_msg_timeout_t timeout,
 mach_port_name_t notify
);

A struct used to exchange data between
mach ports

Option specifies
send/receive!

©2024 Google 20

T H E A T T A C K C Y C L E

The (Memory Corruption) Attack Cycle

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

©2024 Google 21

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

©2024 Google 22

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

©2024 Google 23

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

©2024 Google 24

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

Privilege Escalation

Unprivileged
Process
(Code
Execution)

Privileged Process

Message Handler

Mach IPC

©2024 Google 25

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

Privilege Escalation

Unprivileged
Process
(Code
Execution)

Privileged Process

Message Handler

Mach IPC

©2024 Google 26

T H E A T T A C K C Y C L E

Abusing Mach Messages

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sandbox Escape

Web Browser
Process
(Code
Execution)

Sandbox (Restricted)

System Daemon
(Unrestricted)

Message Handler

Mach IPC

Privilege Escalation

Unprivileged
Process
(Code
Execution)

Privileged Process

Message Handler

Mach IPC

©2024 Google 27

T H E A T T A C K C Y C L E

Previous Mach Research

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

BlackHat: Breaking the Chrome Sandbox with Mojo
• https://i.blackhat.com/USA-22/Wednesday/US-22-Roettger-Breaking-the-Chrome-

Sandbox-with-Mojo.pdf

• Race condition + DoS == RCE

A Methodical Approach to Browser Exploitation

• http://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/
• Safari sandbox escape via mach IPC messages == RCE

https://i.blackhat.com/USA-22/Wednesday/US-22-Roettger-Breaking-the-Chrome-Sandbox-with-Mojo.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Roettger-Breaking-the-Chrome-Sandbox-with-Mojo.pdf
http://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/

©2024 Google 28

❯ ./sbtool 2813 mach
com.apple.logd
com.apple.xpc.smd
com.apple.remoted
com.apple.metadata.mds
com.apple.coreduetd
com.apple.apsd
com.apple.coreservices.launchservicesd
com.apple.bsd.dirhelper
com.apple.logind
com.apple.revision
…Truncated…

T H E A T T A C K C Y C L E

Finding Sandbox-Allowed Communications

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

How do we know what processes could allow an escape?

sbtool: https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c
• Use built-in sandbox_check() function to determine which mach services a process can send to
• Message handlers we can send to à potential for sandbox escapes

https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c

©2024 Google 29

T H E A T T A C K C Y C L E

Finding Sandbox-Allowed Communications

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

How do we know what processes could allow an escape?

sbtool: https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c
• Use built-in sandbox_check() function to determine which mach services a process can send to
• Message handlers we can send to à potential for sandbox escapes

All MacOS
Processes

Processes
with a
Mach
Service

Processes
with a
Sandbox-
Allowed
Mach
Service

https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c

©2024 Google 30

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

We know that mach_msg() is used
to send mach messages from one
process to another

Why not just modify real mach
messages being sent?

Sending Process Receiving Process

mach_msg()
Function

Kernel Message Handler“By Land!”

Sending
Process said:
“By Land!”

1 2

1

2

©2024 Google 31

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes Sending Process Receiving Process

Kernel Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

Hook mach_msg() with lldb and
modify message being sent

M
ut

at
io

n

Wait for mach_msg()
Function call

We know that mach_msg() is used
to send mach messages from one
process to another

Why not just modify real mach
messages being sent?

1 2

©2024 Google 32

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes Sending Process Receiving Process

Kernel Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

Hook mach_msg() with lldb and
modify message being sent

M
ut

at
io

n

Wait for mach_msg()
Function call

Pros:
• Simple
• Similar to end exploit

Cons:
• Slow (At mercy of the application to send messages)
• Many points of potential failure
• Two different process spaces (code coverage difficult)
• Difficult to determine which message caused crash

©2024 Google 33

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes Sending Process Receiving Process

Kernel Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

M
ut

at
io

n

Wait for mach_msg()
Function call

Instead of waiting for mach_msg() to be called,
what if we write a program to call it ourselves?

Hook mach_msg() with lldb and
modify message being sent

©2024 Google 34

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes Sending Process

Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

M
ut

at
io

n

Wait for mach_msg()
Function call

Instead of waiting for mach_msg() to be called,
what if we write a program to call it ourselves?

Hook mach_msg() with lldb and
modify message being sent

Receiving Process

Call mach_msg()
to send

Kernel

©2024 Google 35

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes Sending Process

Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

M
ut

at
io

n

Wait for mach_msg()
Function call

Instead of waiting for mach_msg() to be called,
what if we write a program to call it ourselves?

Even Better: What if we just called the message handler
directly?

Getting ”close” to the system of interest

Hook mach_msg() with lldb and
modify message being sent

Receiving Process

Call Message
Handler

Fuzzing Harness

©2024 Google 36

T H E A T T A C K C Y C L E

Finding an Entry Point

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Pros:
• Very fast
• Same process space easy for instrumentation/code

coverage
• Easy to know which input caused crash/replicate

Cons:
• Different from end exploit
• Might have to invoke initialization routines

Sending Process

Message Handler

Sending
Process said:

“By Sea!”
“By Sea!”

M
ut

at
io

n

Wait for mach_msg()
Function call

Hook mach_msg() with lldb and
modify message being sent

Receiving Process

Call Message
Handler

Fuzzing Harness

©2024 Google 37

T H E A T T A C K C Y C L E

We have an attack vector – but what should we send?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Sending totally random data is not likely to produce
meaningful crashes
– Exception handlers
– Input validation

We need to identify
examples of valid
mach messages (e.g.
“corpus building”)

©2024 Google

T H E A T T A C K C Y C L E

Prep-Work

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

1. Setting up a MacOS virtual machine
2. Disabling System Integrity Protection (SIP)

• csrutil disable

3. Disabling ReportCrash
4. Disabling Sleep

• systemsetup -setsleep Never

5. Much more information provided: Jeremy Brown - Summer of
Fuzz: MacOS - DEF CON 29 AppSec Village

A number of things to take into consideration when we
start debugging on MacOS

https://www.youtube.com/watch?v=T5xfL9tEg44
https://www.youtube.com/watch?v=T5xfL9tEg44

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Find a mach service of interest1

In our case, will be services sandboxed processes
can communicate with

Let’s focus on com.apple.audio.coreaudiod
• Handles all interactions with audio hardware
• Privileged process
• Allowed to send mach messages from many processes

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Find the binary that implements the mach service2

• com.apple.audio.coreaudiod registered with
launchd

• Spawns /usr/sbin/coreaudiod
• Mach server handled by CoreAudio Framework

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

3 Extract the binary from
the dyld shared cache
• Dyld shared cache: Starting with

Big Sur, most framework binaries
are not on disk

• We can extract them!
• https://github.com/keith/dyld-

shared-cache-extractor

https://github.com/keith/dyld-shared-cache-extractor
https://github.com/keith/dyld-shared-cache-extractor

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

4 Find function implementing
mach receive functionality
• Wait, isn’t this just mach_msg()?

– Non-blocking, traps to kernel when a message is
received

• Need to perform kernel debugging if we
want to intercept incoming mach messages
– This has been done:

https://www.fortinet.com/blog/threat-
research/inspect-mach-messages-in-macos-kernel-
mode--part-ii--sniffing-th

• Kernel debugging cons:
– We see all mach messages, difficult to isolate target

process

– Two-machine debugging required

• Is there an easier way?

https://www.fortinet.com/blog/threat-research/inspect-mach-messages-in-macos-kernel-mode--part-ii--sniffing-th
https://www.fortinet.com/blog/threat-research/inspect-mach-messages-in-macos-kernel-mode--part-ii--sniffing-th
https://www.fortinet.com/blog/threat-research/inspect-mach-messages-in-macos-kernel-mode--part-ii--sniffing-th

©2024 Google

https://wcventure.github.io/FuzzingPaper/Paper/SRDS19_MachFuzzer.pdf

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Mach Interface Generator (MIG)
• Apple provides MIG to more easily write

RPC handlers and clients
• Interface Definition Language (IDL)

compiler
• Abstracts much of the mach IPC layer

away
• What if we searched for MIG-generated

routines and dumped their incoming
mach messages?

https://wcventure.github.io/FuzzingPaper/Paper/SRDS19_MachFuzzer.pdf

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Find function implementing mach receive functionality
• Hopper script:

https://github.com/knightsc/hopper/blob/master/scripts/MIG%20Detect.py

3

https://github.com/knightsc/hopper/blob/master/scripts/MIG%20Detect.py

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Find function implementing
mach receive functionality
_HALS_HALB_MIGServer_subsystem
• Function lookup table

3

©2024 Google

T H E A T T A C K C Y C L E

Finding the Mach Message
Handler

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Find function implementing
mach receive functionality
_HALS_HALB_MIGServer_subsystem
• Function lookup table

3

©2024 Google

T H E A T T A C K C Y C L E

Generate a Corpus of Inputs

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

I wrote a simple script to hook onto the message handler using LLDB

©2024 Google

T H E A T T A C K C Y C L E

Generate a Corpus of Inputs

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

©2024 Google 49

T H E A T T A C K C Y C L E

What is a Fuzzing Harness?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

A fuzzing harness is code that
allows you to send input through
an attack vector.
(Call a desired function)

©2024 Google 50

T H E A T T A C K C Y C L E

Calling the Target Function

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Target Function: _HALB_MIGServer_server
• Simple on Windows:

– HMODULE hModule = LoadLibrary(“libexample.dll”)
– pFunction = GetProcAddress(hModule,
“DesiredFunction”)

• On MacOS, similar:
– void *lib_handle = dlopen(“libexample.dylib”,
RTLD_LAZY)

– pFunction = dlsym(lib_handle, “DesiredFunction”)

• What if the symbol isn’t exported?
• Write your own Mach-O symbol parser

– A talk for another time J

©2024 Google 51

T H E A T T A C K C Y C L E

Calling the Target Function

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Target Function: _HALB_MIGServer_server
• Simple on Windows:

– HMODULE hModule = LoadLibrary(“libexample.dll”)
– pFunction = GetProcAddress(hModule,
“DesiredFunction”)

• On MacOS, similar:
– void *lib_handle = dlopen(“libexample.dylib”,
RTLD_LAZY)

– pFunction = dlsym(lib_handle, “DesiredFunction”)

• What if the symbol isn’t exported?
• Write your own Mach-O symbol parser

– A talk for another time J

©2024 Google 52

T H E A T T A C K C Y C L E

What is a Fuzzer?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

A fuzzer is a program that
generates inputs to be sent to a
system and monitors for crashes.

©2024 Google 53

T H E A T T A C K C Y C L E

What is a Fuzzer?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Message Handler

Fuzzer

Receiving Process

1

Corpus

Take in inputs

2 Mutate input

Crash No
Crash

3 If Crash: Save
Input!

4 Continue to
next input

Fuzzing Harness

©2024 Google 54

T H E A T T A C K C Y C L E

The Need For Code Coverage

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

©2024 Google 55

T H E A T T A C K C Y C L E

What is Code Coverage

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Code coverage traces a program’s
execution flow to identify new code
paths.

©2024 Google 56

T H E A T T A C K C Y C L E

How Do We Determine Code Coverage?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Message Handler

Fuzzer

Receiving Process

1

Corpus

Take in inputs

2 Mutate input

Crash Same
Code Path

3 Determine whether
good input

4
If new code path:
Add input to corpus

Fuzzing Harness

New Code
Path

©2024 Google

T H E A T T A C K C Y C L E

How Do We Determine Code Coverage?

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Use instrumentation to monitor basic block execution
• Simple with source code:

– AFL++ (https://github.com/AFLplusplus/AFLplusplus)

– LibFuzzer (https://llvm.org/docs/LibFuzzer.html)

– gCov (https://gcc.gnu.org/onlinedocs/gcc/Gcov.html)

• More difficult with black box binaries:
– Frida (https://frida.re/)

– TinyInst (https://github.com/googleprojectzero/TinyInst)

• Interpreting code coverage:
– LightHouse for IdaPro/BinaryNinja (https://github.com/gaasedelen/lighthouse)

https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://frida.re/
https://github.com/googleprojectzero/TinyInst
https://github.com/gaasedelen/lighthouse

©2024 Google

T H E A T T A C K C Y C L E

Actually Fuzzing!

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

My fuzzing setup
• Jackalope Fuzzer

(https://github.com/googleprojectzero/Jackalope)
• Enable Apple’s GuardMalloc

– Restricted pages placed surrounding all allocations

– DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib

• TinyInst for dynamic instrumentation to dump coverage
• LightHouse to interpret code coverage

https://github.com/googleprojectzero/Jackalope

©2024 Google

T H E A T T A C K C Y C L E

Actually Fuzzing!

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

©2024 Google

T H E A T T A C K C Y C L E

Regularly Check Code Coverage

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

We can learn a lot
from the code paths
our fuzzer does and
doesn’t take

Goal: Cover as much
of the binary as
possible!

©2024 Google

T H E A T T A C K C Y C L E

Exploitable Versus Non-Exploitable Crashes

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Exploitable:
• Crash on write
• Crash on execution
• Illegal instruction
• Heap corruption abort
• Stack trace contains free, malloc, etc.

Likely Non-Exploitable:
• Crash on read (could be used to leak

memory, though)
• Handled exception
• Null pointer dereferences
• Stack recursion

©2024 Google

T H E A T T A C K C Y C L E

Exploitable Versus Non-Exploitable Crashes

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Exploitable:
• Crash on write
• Crash on execution
• Illegal instruction
• Heap corruption abort
• Stack trace contains free, malloc, etc.

Likely Non-Exploitable:
• Crash on read (could be used to leak

memory, though)
• Handled exception
• Null pointer dereferences
• Stack recursion

Useful Tools:
• Apple’s CrashWrangler

(https://developer.apple.com/library/archive/
technotes/tn2334/index.html)
• CrashMon

(https://github.com/ant4g0nist/crashmon)

https://developer.apple.com/library/archive/technotes/tn2334/_index.html
https://developer.apple.com/library/archive/technotes/tn2334/_index.html
https://github.com/ant4g0nist/crashmon

©2024 Google

T H E A T T A C K C Y C L E

Exploitable Versus Non-Exploitable Crashes

Identify an
attack vector

Generate a
Corpus of
Inputs

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Identify
Relevant
Crashes

Exploitable:
• Crash on write
• Crash on execution
• Illegal instruction
• Heap corruption abort
• Stack trace contains free, malloc, etc.

Likely Non-Exploitable:
• Crash on read (could be used to leak

memory, though)
• Handled exception
• Null pointer dereferences
• Stack recursion

Useful Tools:
• Apple’s CrashWrangler

(https://developer.apple.com/library/archive/
technotes/tn2334/index.html)
• CrashMon

(https://github.com/ant4g0nist/crashmon)

Crash Reproducibility
• Should be able to run input through harness

and reproduce the crash

https://developer.apple.com/library/archive/technotes/tn2334/_index.html
https://developer.apple.com/library/archive/technotes/tn2334/_index.html
https://github.com/ant4g0nist/crashmon

©2024 Google

F U Z Z I N G T A K E A W A Y S

What We’ve Covered

•A crash course on fuzzing and Mach IPC mechanisms
•A walkthrough of the attack process:
– Identifying an attack vector
–Generating a corpus of fuzzing inputs
–Writing a custom fuzzing harness
– Fuzzing and producing crashes
– Crash triaging

•Common pitfalls and things to consider
• Inspired you to do vulnerability research!

©2024 Google

F U Z Z I N G T A K E A W A Y S

Next Steps

• Increase code coverage of Mach IPC handlers
– Stateful Mach message fuzzing (determining message order

when it matters)
–Automatic initialization of Mach service binaries

•Scale up fuzzing power using Google Cloud
resources
•Open-source my Mach message dumper and
fuzzing harness
– Currently in progress, getting approval to release

•Collaborate with YOU!
–Always looking for others to collaborate on research with

Twitter: @dillon_franke

Blog: https://dillonfrankesecurity.com

https://dillonfrankesecurity.com/

©2024 Google

F U Z Z I N G T A K E A W A Y S

Questions

Thank You!
Twitter: @dillon_franke

Blog: https://dillonfrankesecurity.com

https://dillonfrankesecurity.com/

