
©2025 Google

Breaking the Sound
Barrier

Dillon Franke

Exploiting CoreAudio via
Mach Message Fuzzing

©2025 Google 2

$ whoami

Senior Security Engineer, ISE
(Security Research)

Product Security Reviews
Vulnerability Research

Project Zero 20% Research
MacOS Vulnerability Research

CURRENTLY PREVIOUSLY

STUDIED

Mandiant Red Team
(Pentesting)

Application Security
Source Code Reviews
Embedded Device Assessments

FLARE Offensive Task Force
(OTF)
(Reverse Engineering)

Malware reversing
Searching for exploits used in the wild
0-day vulnerability research
Exploit development

Bachelor’s & Master’s in Computer
Science at Stanford University

Security and Systems Engineering

HOBBIES
Playing Guitar
Cycling in the San Francisco Bay Area
Hacking (obviously)

©2025 Google

Overview
Vulnerabilities, Exploitation, & Patches

The Attack Cycle

Crash Course on Fuzzing and Mach IPC

Q&A

©2025 Google 4

CRASH COURSE

What is Fuzzing?

Fuzzing is sending unexpected
inputs to a system in the
hopes of making something
unexpected happen

©2025 Google 5

CRASH COURSE

Knowledge-Driven Fuzzing

Automation
(Fuzzing)

Manual
Analysis

● Quickly identify
interesting inputs
without
understanding code
base

● “Move fast and
break things”

● Why is the code
coverage
plateauing?

● Why is the fuzzer
causing strange
errors?

● Develop
understanding of
the code base

©2025 Google 6

Attack Cycle

1. Identify an attack vector
2. Choose a target
3. Create a fuzzing harness
4. Fuzz and produce crashes
5. Analyze crashes and code coverage
6. Iterate on the fuzzing harness
7. Identify relevant crashes
8. Identify and exploit a vulnerability

©2025 Google 7

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Identify an Attack Vector

©2025 Google 8

THE ATTACK CYCLE

Abusing IPC for Sandbox Escapes
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Exploiting a modern browser typically
requires an additional “sandbox escape”
vector

● Interprocess Communication (IPC)
mechanisms can serve as a natural bridge
between a restricted and unrestricted
process

©2025 Google 9

THE ATTACK CYCLE

Mach Messages: A History of Abuse
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Project Zero: task_t considered harmful (Ian Beer): Mach
messages abused to exploit a critical task_t design flaw
(sandbox escape/privilege escalation).

● In-the-wild iOS Exploit Chain 2 - IOSurface (Ian Beer): Mach
messages abused for heap grooming

● A Methodical Approach to Browser Exploitation | RET2
Systems Blog: Leveraging Mach message handlers to build a
Safari sandbox escape exploit

https://googleprojectzero.blogspot.com/2016/10/taskt-considered-harmful.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-2.html
https://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/
https://blog.ret2.io/2018/06/05/pwn2own-2018-exploit-development/

©2025 Google 10

An IPC message queue,
managed by the kernel

Receive Right: Allows
receiving a mach port’s
messages

Send Right: Allows
sending messages to
a mach port

Port Right: Handle to a port that allows sending or receiving messages to the port

THE ATTACK CYCLE

Mach Ports
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

©2025 Google 11

Establishing a Mach Connection

Bootstrap Server
• A mach port to help establish

connections with other mach ports
• By default, all processes have a send

right to the bootstrap server

Mach Service
• A mach port with a name that is

registered with the Bootstrap Server
(e.g. com.apple.obts)

Communicating with a Service
Alice allocates a new mach port with a receive right

Alice registers her service using a specific name

com.apple.obts
By registering, Alice is giving the bootstrap server a

send right to the port Alice has a receive right to

Bob asks the bootstrap server for the service

named com.apple.obts and the server gives Bob a

copy of the send right for Alice’s mach port

Bob can now send messages to Alice’s mach port

for Alice to receive

1

2

3

4

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

©2025 Google 12

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Choose a Target

©2025 Google 13

THE ATTACK CYCLE

System Daemons Register Mach Services
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● MacOS system daemons register Mach services using launchd

● .plist files in /System/Library/LaunchAgents and
/System/Library/LaunchDaemons

©2025 Google 14

THE ATTACK CYCLE

Finding Sandbox-Allowed Communications
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Identify high-impact,
sandboxed processes we’d
like to breakout of
○ Web browsers
○ Adobe Acrobat
○ Microsoft Word

● Analyze which Mach services
they can interact with

● Identify the binaries
implementing those Mach
services

©2025 Google 15

THE ATTACK CYCLE

Finding Sandbox-Allowed Communications: .sb Files
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Sandboxed processes need
explicit permission to send
Mach messages.

● Apple's App Sandbox uses
.sb files with TinyScheme
format for this.

● allow mach-lookup
grants permission to send
Mach messages to a given
service

File:

/System/Volumes/Preboot/Cryptexes/Incoming/OS/System/L

ibrary/Frameworks/WebKit.framework/Versions/A/Resource

s/com.apple.WebKit.GPUProcess.sb

(with-filter (system-attribute apple-internal)

 (allow mach-lookup

 (global-name "com.apple.analyticsd")

 (global-name "com.apple.diagnosticd")))

(allow mach-lookup

 (global-name "com.apple.audio.audiohald")

 (global-name "com.apple.CARenderServer")

 (global-name "com.apple.fonts")

 (global-name

"com.apple.PowerManagement.control")

 (global-name "com.apple.trustd.agent")

 (global-name "com.apple.logd.events"))

https://tinyscheme.sourceforge.net/home.html

©2025 Google 16

❯ ./sbtool 2813 mach
com.apple.logd
com.apple.xpc.smd
com.apple.remoted
com.apple.metadata.mds
com.apple.coreduetd
com.apple.apsd
com.apple.coreservices.launchservicesd
com.apple.bsd.dirhelper
com.apple.logind
com.apple.revision
…Truncated…

THE ATTACK CYCLE

Finding Sandbox-Allowed Communications: sbtool

sbtool: https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c
•Use built-in sandbox_check() function to determine which mach services a process can

send to
• Message handlers we can send to → potential for sandbox escapes

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

https://newosxbook.com/src.jl?tree=listings&file=/sbtool.c

©2025 Google 17

THE ATTACK CYCLE

Target Selection: coreaudiod
Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Contains complex service: com.apple.audio.audiohald

● Allows Mach communications from several impactful applications, including
the Safari GPU process

● The Mach service has a large number of message handlers

● The service seemed to allow control and and modification of audio hardware,
which would likely require elevated privileges

● The coreaudiod binary and the CoreAudio Framework it heavily uses are
both closed source

○ A unique reverse engineering challenge 😎

©2025 Google 18

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Create a Fuzzing Harness

©2025 Google 19

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

A fuzzing harness is code
that allows you to send input
through an attack vector.
(Call a desired function)

What is a Fuzzing Harness?

©2025 Google 20

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

The Entry Point Matters

● Fuzzers can find much more than surface-level bugs!

● A coverage-guided fuzzer is a powerful weapon

○ Only if its energy is focused in the right place

● The “right place” to fuzz

○ Ease of development / unrealistic environment?

○ Increased performance / more false positives?

○ Highly dependent on the target and research goals

©2025 Google 21

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Option 1: Interprocess Message Send

● The natural way to send a message to a Mach service is using the mach_msg()
API

● Write a harness that repeatedly uses mach_msg() to send input

©2025 Google 22

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Option 1: Interprocess Message Send

Pros:
● Simple
● Similar to end exploit
Cons:
● Slow (At mercy of the application to send messages)
● Many points of potential failure
● Two different process spaces (code coverage difficult)
● Difficult to determine which message caused crash

©2025 Google 23

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Option 2: Direct Harness

● Load code implementing Mach message handlers

● Call handlers directly with desired input

©2025 Google 24

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Option 2: Direct Harness

Pros:
● Very fast
● Same process space easy for instrumentation/code coverage
● Easy to know which input caused crash/replicate
Cons:
● Different from end exploit
● Might have to invoke initialization routines

©2025 Google 25

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Option 2: Direct Harness

Pros:
● Very fast
● Same process space easy for instrumentation/code coverage
● Easy to know which input caused crash/replicate
Cons:
● Different from end exploit
● Might have to invoke initialization routines

©2025 Google 26

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Direct Harness: The Approach

1. Identify the Mach message handling function
2. Write a fuzzing harness to load the message handling code from

coreaudiod
3. Use a fuzzer to generate inputs and call the fuzzing harness
4. Profit, hopefully

©2025 Google 27

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Finding the Mach Message Handler

● No references to com.apple.audio.audiohald within the coreaudiod
binary

$ otool -L /usr/sbin/coreaudiod

/usr/sbin/coreaudiod:

 /System/Library/PrivateFrameworks/caulk.framework/Versions/A/caulk

(compatibility version 1.0.0, current version 1.0.0)

 /System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio

(compatibility version 1.0.0, current version 1.0.0)

 /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation

(compatibility version 150.0.0, current version 2602.0.255)

 /usr/lib/libAudioStatistics.dylib (compatibility version 1.0.0, current version

1.0.0, weak)

 /System/Library/Frameworks/Foundation.framework/Versions/C/Foundation

(compatibility version 300.0.0, current version 2602.0.255)

©2025 Google 28

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Finding the Mach Message Handler

● No references to com.apple.audio.audiohald within the coreaudiod
binary

● And, where was the CoreAudio Framework!?

$ stat /System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio

stat: /System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio: stat:

No such file or directory

©2025 Google 29

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Finding the Mach Message Handler

● Dyld shared cache: Starting with Big Sur, most framework binaries are not on
disk

● We can extract them!
● https://github.com/keith/dyld-shared-cache-extractor

○ Can also load cache directly from
/System/Volumes/Preboot/Cryptexes/OS/System/Library/dyld
into:
■ Ida Pro
■ Binary Ninja

https://github.com/keith/dyld-shared-cache-extractor

©2025 Google 30

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Finding the Mach Message Handler

©2025 Google 31

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Finding the Mach Message Handler: MIG Subsystems

● Many Mach services use the Mach Interface Generator (MIG)

● Interface Definition Language that abstracts away much of the Mach layer

$ nm -m ./System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio

| grep -i subsystem

 (undefined) external _CACentralStateDumpRegisterSubsystem

(from AudioToolboxCore)

00007ff840470138 (__DATA_CONST,__const) non-external

_HALC_HALB_MIGClient_subsystem

00007ff840470270 (__DATA_CONST,__const) non-external

_HALS_HALB_MIGServer_subsystem

https://www.gnu.org/software/hurd/microkernel/mach/mig/gnu_mig.html

©2025 Google 32

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

HALB_MIGServer_server

● Identified where the
_HALS_HALB_MIGServer_s
ubsystem was used
○ Function lookup table

©2025 Google 33

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

HALB_MIGServer_server

● Identified where the
_HALS_HALB_MIGServer_s
ubsystem was used
○ Function lookup table

©2025 Google 34

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Call the Mach Message Handler

● Load CoreAudio library and call HALB_MIGServer_server

○ But it’s not exported!

● Borrowed some logic from Ivan Fratric and his TinyInst library (we’ll talk about
this more later ;)

○ Parses Mach-O binary headers/load commands to extract symbol info

○ Could use it to resolve and call the target function!

https://github.com/googleprojectzero/TinyInst
https://github.com/googleprojectzero/TinyInst/blob/fb1cceb7ec3c44cb18c4c01685e496777e0bcdc9/macOS/debugger.cpp#L1169
https://github.com/googleprojectzero/p0tools/blob/master/CoreAudioFuzz/helpers/initialization.cc

©2025 Google 35

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Fuzzing Harness

● Full fuzzing harness can
be found here:
https://github.com/googl
eprojectzero/p0tools/blo
b/master/CoreAudioFuzz
/harness.mm

$./harness -f corpora/basic/1 -v

*******NEW MESSAGE*******

Message ID: 1010000 (XSystem_Open)

------ MACH MSG HEADER ------

msg_bits: 2319532353

msg_size: 56

msg_remote_port: 1094795585

msg_local_port: 1094795585

msg_voucher_port: 1094795585

msg_id: 1010000

------ MACH MSG BODY (32 bytes) ------

0x01 0x00 0x00 0x00 0x03 0x30 0x00 0x00 0x41 0x41 0x41 0x41 0x41 0x41 0x11 0x00 0x41 0x41

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

------ MACH MSG TRAILER ------

msg_trailer_type: 0

msg_trailer_size: 32

msg_seqno: 0

msg_sender: 0

------ MACH MSG TRAILER BODY (32 bytes) ------

0xf5 0x01 0x00 0x00 0xf5 0x01 0x00 0x00 0x14 0x00 0x00 0x00 0xf5 0x01 0x00 0x00 0x14 0x00

0x00 0x00 0x7e 0x02 0x00 0x00 0xa3 0x86 0x01 0x00 0x4f 0x06 0x00 0x00

Processing function result: 1

*******RETURN MESSAGE*******

------ MACH MSG HEADER ------

msg_bits: 1

msg_size: 36

msg_remote_port: 1094795585

msg_local_port: 0

msg_voucher_port: 0

msg_id: 1010100

------ MACH MSG BODY (12 bytes) ------

0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

https://github.com/googleprojectzero/p0tools/blob/master/CoreAudioFuzz/harness.mm
https://github.com/googleprojectzero/p0tools/blob/master/CoreAudioFuzz/harness.mm
https://github.com/googleprojectzero/p0tools/blob/master/CoreAudioFuzz/harness.mm
https://github.com/googleprojectzero/p0tools/blob/master/CoreAudioFuzz/harness.mm

©2025 Google 36

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Harvesting Legitimate Mach Messages

● Coverage-guided fuzzer will
mutate/identify good inputs

● But, a seed corpus is often
helpful

● Used a Python lldb script to
break on the MIG handler and
dump real Mach messages
sent to coreaudiod

● Audio MIDI Setup application
on MacOS was helpful

©2025 Google 37

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Fuzz and Produce CrashesCreate a
Fuzzing
Harness

©2025 Google 38

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

● Used the excellent Jackalope fuzzer by
Ivan Fratric

○ High level of customizability (custom
mutators, instrumentation, sample
delivery)

○ Seamless usage on MacOS

○ Code coverage provided by TinyInst
(also by Ivan Fratric)

■ A lightweight dynamic
instrumentation library

Firing up the Fuzzer

https://github.com/googleprojectzero/Jackalope
https://github.com/googleprojectzero/Tinyinst

©2025 Google 39

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Crashes, Already!?

● The fuzzer immediately started producing crashes!

● Targeted fuzzing

○ Initial crashes are often not security relevant

○ They indicate a fuzzing harness design bug or an invalid
assumption!

©2025 Google 40

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iterate on the Fuzzing Harness

©2025 Google 41

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 1: Target Initialization

● The fuzzer neglects bootstrapping/initialization tasks!

©2025 Google 42

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 1: Target Initialization

● Code coverage and
error messages can
be insightful

©2025 Google 43

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 2: API Call Chaining

● Another bad assumption:

○ All Mach message handlers functioned independently of each
other

● Clearly, HALS_Object_SetPropertyData_DPList expected a
previous message to initialize a client

©2025 Google 44

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 2: API Call Chaining

● The need for Structured Fuzzing

○ Most fuzzers only accept bytes!

○ Idea: consume those bytes as a stream and use them to do
different things

○ Ned Williamson’s 2019 OffensiveCon Talk

https://youtu.be/xzG0pLM4Q64

©2025 Google 45

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 2: API Call Chaining
● API Call Chaining: Single fuzz input → Multiple Mach messages

extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {

 FuzzedDataProvider fuzz_data(data, size); // Initialize FDP

 while (fuzz_data.remaining_bytes() >= MACH_MSG_MIN_SIZE) { // Continue until we've consumed

all bytes

 uint32_t msg_id = fuzz_data.ConsumeIntegralInRange<uint32_t>(1010000, 1010062);

 switch (msg_id) {

 case '1010000': {

 send_XSystem_Open_msg(fuzz_data);

 }

 case '1010001': {

 send_XSystem_Close_msg(fuzz_data);

 }

 case '1010002': {

 send_XSystem_GetObjectInfo_msg(fuzz_data);

 }

 ... continued

 }

 }

}

©2025 Google 46

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 3: Mocking Out Functionality

● Fuzzer gets stuck exploring irrelevant functionality

● Buggy or unneeded functionality

● C Function Interposing:
kern_return_t custom_bootstrap_check_in(mach_port_t bootstrap_port,

const char *service_name, mach_port_t *service_port) {

 // Ensure service_port is non-null and make it non-zero

 if (service_port) {

 *service_port = 1; // Set to a non-zero value

 }

 return KERN_SUCCESS; // Return 0 (KERN_SUCCESS)

}

©2025 Google 47

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 3: Mocking Out Functionality

● Silly bugs messing up fuzzing efficiency!

©2025 Google 48

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 3: Mocking Out Functionality

● TinyInst Hook API:
void HALSWriteSettingHook::OnFunctionEntered() {

 printf("HALS_SettingsManager::_WriteSetting Entered\n");

 if (!GetRegister(RDX)) {

 printf("NULL plist passed as argument, returning to prevent NULL CFRelease\n");

 printf("Current $RSP: %p\n", GetRegister(RSP));

 void *return_address;

 RemoteRead((void*)GetRegister(RSP), &return_address, sizeof(void *));

 printf("Current return address: %p\n", GetReturnAddress());

 printf("Current $RIP: %p\n", GetRegister(RIP));

 SetRegister(RAX, 0);

 SetRegister(RIP, GetReturnAddress());

 printf("$RIP register is now: %p\n", GetRegister(ARCH_PC));

 SetRegister(RSP, GetRegister(RSP) + 8); // Simulate a ret instruction

 }

}

https://github.com/googleprojectzero/TinyInst/blob/master/hook.md

©2025 Google 49

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Iteration 3: Mocking Out Functionality

● Full custom fuzzer implementation:
○ https://github.com/googleprojectzero/p0tools/tree/ma

ster/CoreAudioFuzz/jackalope-modifications

https://github.com/googleprojectzero/p0tools/tree/master/CoreAudioFuzz/jackalope-modifications
https://github.com/googleprojectzero/p0tools/tree/master/CoreAudioFuzz/jackalope-modifications

©2025 Google 50

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Identify and Exploit a Vulnerability

©2025 Google 51

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Hardware Abstraction Layer (HAL)

● Interact with audio devices, plugins, and settings on the operating
system

● Information
stored on the
heap

● Linked list of
HALS_Objects

● Wrote a TinyInst
hook to dump
them all

©2025 Google 52

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Hardware Abstraction Layer (HAL)

● Looking up or modifying a HALS_Object

○ Most CoreAudio APIs use CopyObjectByObjectID(uint)

○ Takes an index parameter and fetches the corresponding object
within the linked list

©2025 Google 53

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

An Intriguing Crash: _XIOContext_Fetch_Workgroup_Port
● Shallow crash on a call instruction!?

©2025 Google 54

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

An Intriguing Crash
The rax register was derived from a call to CopyObjectByObjectID

1. Fetch a HALS_Object
from the Object Map
based on an ID
provided in the Mach
message

2. Dereference the
address a1 at offset
0x68 of the
HALS_Object

3. Dereference the
address a2 at offset
0x0 of a1

4. Call the function
pointer at offset 0x168
of a2

©2025 Google 55

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

CVE-2024-54529: Type Confusion

mov rdi, [HALS_Obj + 0x68]

mov rax, [rdi]

call qword ptr[rax + 0x168]

©2025 Google 56

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

CVE-2024-54529
● Reported to Apple on October 9, 2024

● Fixed on December 11, 2024

©2025 Google 57

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Exploitation Strategy
● Try to find a way to write data to offset 0x68 of any HALS_Object

○ Several places we can influence this, for example

○ When creating a new audio device, we can place a “uid”
CFString at the vulnerable offset

©2025 Google 58

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Exploitation Strategy
● Try to find a way to write data to offset 0x68 of any HALS_Object

○ Several places we can influence this, for example

○ When creating a new audio device, we can place a “uid”
CFString at the vulnerable offset

©2025 Google 59

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

The Problem with CFString

● The CFString type has an uncontrollable header

○ We need offset 0x0 of the object pointed to at offset 0x68 of the
object to be a pointer to our controlled data

mov rdi, [HALS_Obj + 0x68]

mov rax, [rdi]

call qword ptr[rax + 0x168]

©2025 Google 60

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Exploitation Strategy

● So, we need to write a pointer to an object we control

● That object would, in turn, point to data we control

● A little tricky!

mov rdi, [HALS_Obj + 0x68]

mov rax, [rdi]

call qword ptr[rax + 0x168]

©2025 Google 61

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Running coreaudiod with Guard Malloc PreScribble
● Guard Malloc can be used on MacOS/iOS to more easily catch

memory issues

● The PreScribble option places 0xAA bytes in freshly allocated
memory blocks

○ Easily to tell when objects are not zero’d properly

○ Can lead to using uninitialized (or previously freed) memory!

©2025 Google 62

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

The ngne Object!

6 high bytes
are using
uninitialized
memory!

©2025 Google 63

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

6 high bytes
are using
uninitialized
memory!

The ngne Object!

©2025 Google 64

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

(New) Exploitation Strategy
1. Find a way to allocate an ngne object

2. Find a way to allocate a bunch of data we control

3. Try to get a create of indirect pointers to that controlled data

4. Try to get the program to reuse our indirect pointers in the unclaimed
memory region when allocating our ngne object

*Caveat: the indirect pointer will have its last 2 bytes zero’d out

©2025 Google 65

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Allocating an ngne Object
● Found a convoluted path to create an ngne object in IDA:

©2025 Google 66

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

One Little Problem with Allocating 776 Bytes…

● Malloc Size Zones!
● Nano Region

○ 0 < 256 bytes
● Tiny Region

○ 256 ≤ 1008 bytes
● Small Region

○ 1009 Bytes ≤ 32 KB
● Medium Region

○ 32 KB ≤ 8192 KB
● Large Region

○ 8193 KB+

Data cleared before
allocation!

Data not cleared
before allocation!

©2025 Google 67

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

There’s Another Way!
● Another ngne object was created with a size of 1152 bytes, putting

it in the small malloc region!
● The problem? To instantiate it, you needed to create an audio

plugin
○ Place a plugin bundle in a root-owned directory :(

©2025 Google 68

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Naturally Occuring ngne Objects
● Discovered that there a several ngne objects that get created

when coreaudiod starts up
○ Could we cause one of those objects to reuse our sprayed

data?
● System Daemons on MacOS continually restart, so we can keep

trying/crashing the process
○ Unlimited retries!

©2025 Google 69

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Allocating Data: Property Lists to the Rescue!
● Many Apple APIs accept user data in the form of a binary or XML

serialized property list

● APIs deserialize the data, which allocates memory new
CoreFoundation objects

● Function HALS_Object_SetPropertyData_DPList stores them!

©2025 Google 70

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Allocating Data: Property Lists to the Rescue!
● Property List setting data stored in memory…

● And on disk at
/Library/Preferences/Audio/com.apple.audio.SystemSe
ttings.plist

● Reloaded each time
coreaudiod
restarts!

©2025 Google 71

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Property List Data Types

Good options for
indirection!

Good options for
storing payload
data!

Can specify a large number
of elements per plist -
mass allocation primitive!

©2025 Google 72

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Exploitation Strategy
1. Assumed RCE in sandboxed process (e.g. Safari)

2. Call the HALS_Object_SetPropertyData_DPList API multiple
times and pass a plist containing:

a. An array of 1200 CFString objects

3. Trigger the Type Confusion vulnerability (just to crash/restart the
process)

4. Hope that an ngne object got allocated within our old plist

5. Trigger the Type Confusion again on an ngne object (get the
program to make a call into our previously allocated CFString)

6. Repeat steps 3-4 until it works!

©2025 Google 73

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Heap Spraying

©2025 Google 74

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

New Allocation

©2025 Google 75

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Occasionally, Everything Lines Up!

©2025 Google 76

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Building a ROP Chain

©2025 Google 77

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Encoding Things Properly
● Encode payload as UTF-16, otherwise invalid UTF-8 bytes will break

©2025 Google 78

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Demo Time!!!

©2025 Google 79

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Exploitation Strategy
1. Assumed RCE in sandboxed process (e.g. Safari)

2. Call the HALS_Object_SetPropertyData_DPList API multiple
times and pass a plist containing:

a. An array of 1200 CFString objects

3. Trigger the Type Confusion vulnerability (just to crash/restart the
process)

4. Hope that an ngne object got allocated within our old plist

5. Trigger the Type Confusion again on an ngne object (get the
program to make a call into our previously allocated CFString)

6. Repeat steps 3-4 until it works!

©2025 Google 80

THE ATTACK CYCLE

Identify an
attack
vector

Choose a
Target

Create a
Fuzzing
Harness

Fuzz and
Produce
Crashes

Iterate on
the Fuzzing
Harness

Identify and
Exploit a
Vulnerability

Bonus: CVE-2025-31235
● Patched May 12, 2025!

● Double-free in CoreAudio/coreaudiod

● Published writeup

©2025 Google

TAKEAWAYS

Blog Posts & Tool Open Sourcing

● Read through this research in more detail in my blog post:

○ https://googleprojectzero.blogspot.com/2025/05/breaking-sound-bar
rier-part-i-fuzzing.html

● The following tools are also open-sourced:

○ https://github.com/googleprojectzero/p0tools/tree/master/CoreAudio
Fuzz

■ Fuzzing harness

■ Custom instrumentation

■ PoC crash for CVE-2024-54529

https://googleprojectzero.blogspot.com/2025/05/breaking-sound-barrier-part-i-fuzzing.html
https://googleprojectzero.blogspot.com/2025/05/breaking-sound-barrier-part-i-fuzzing.html
https://github.com/googleprojectzero/p0tools/tree/master/CoreAudioFuzz
https://github.com/googleprojectzero/p0tools/tree/master/CoreAudioFuzz

©2025 Google

TAKEAWAYS

Blog Posts & Tool Open Sourcing

● Second post coming soon on the Project Zero blog!

● PoC exploit I showed today coming with it

©2025 Google

TAKEAWAYS

Conclusion

● The power and importance of sandbox escape vectors

● Knowledge-driven fuzzing approach to vulnerability research

● Exploitation process of a Type Confusion vulnerability in
coreaudiod

● Inspired you to perform security research of your own!

©2025 Google

🙏
A Huge Thank You To:

● Ned Williamson
● Ivan Fratric
● My wife, Isabel!

©2025 Google

TAKEAWAYS

Questions

Thank You!
Twitter: @dillon_franke

Blog:
https://dillonfrankesecurity.com

https://dillonfrankesecurity.com/

